All Episodes

March 31, 2022 30 mins

In this episode of the Epigenetics Podcast, we caught up with Sara Wickström, Director at the Max Planck Institute for Molecular Biomedicine in Münster, to talk about her work on the effect of mechanotransduction on chromatin structure and transcription in stem cells.

Sara Wickström and her team focus on the stem cell niche and how that niche affects stem cell function. In order to study the native niche and to even be able to manipulate it, the Wickström Lab was able to develop a ex vivo culture system, allowing systematic identification of factors driving stem cell dynamics and plasticity.

Stem cells in the stem cell niche are exposed to external stimuli such as physical forces which control their growth, fate and self renewal. Recent work in the Wickström lab showed how mechanical signals influence transcriptional regulation, chromatin organization, and nuclear architecture and how this affects aging or lineage commitment. In this Episode we also discuss how chromatin can act as a sensor of mechanical signals taking advantage of the different physical properties of eu- and heterochromatin.

 

References

  • Le, H. Q., Ghatak, S., Yeung, C. Y., Tellkamp, F., Günschmann, C., Dieterich, C., Yeroslaviz, A., Habermann, B., Pombo, A., Niessen, C. M., & Wickström, S. A. (2016). Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nature cell biology, 18(8), 864–875. https://doi.org/10.1038/ncb3387

  • Nava, M. M., Miroshnikova, Y. A., Biggs, L. C., Whitefield, D. B., Metge, F., Boucas, J., Vihinen, H., Jokitalo, E., Li, X., García Arcos, J. M., Hoffmann, B., Merkel, R., Niessen, C. M., Dahl, K. N., & Wickström, S. A. (2020). Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell, 181(4), 800–817.e22. https://doi.org/10.1016/j.cell.2020.03.052

  • Koester, J., Miroshnikova, Y. A., Ghatak, S., Chacón-Martínez, C. A., Morgner, J., Li, X., Atanassov, I., Altmüller, J., Birk, D. E., Koch, M., Bloch, W., Bartusel, M., Niessen, C. M., Rada-Iglesias, A., & Wickström, S. A. (2021). Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nature cell biology, 23(7), 771–781. https://doi.org/10.1038/s41556-021-00705-x

  • Maki, K., Nava, M. M., Villeneuve, C., Chang, M., Furukawa, K. S., Ushida, T., & Wickström, S. A. (2021). Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling. Journal of cell science, 134(2), jcs247643. https://doi.org/10.1242/jcs.247643

     

Related Episodes

 

Contact

Mark as Played

Advertise With Us

Popular Podcasts

Dateline NBC
Death, Sex & Money

Death, Sex & Money

Anna Sale explores the big questions and hard choices that are often left out of polite conversation.

Stuff You Should Know

Stuff You Should Know

If you've ever wanted to know about champagne, satanism, the Stonewall Uprising, chaos theory, LSD, El Nino, true crime and Rosa Parks, then look no further. Josh and Chuck have you covered.

Music, radio and podcasts, all free. Listen online or download the iHeart App.

Connect

© 2024 iHeartMedia, Inc.