MRS Bulletin Materials News Podcast

MRS Bulletin Materials News Podcast

Materials News podcast by MRS Bulletin provides breakthrough news & interviews with researchers on hot topics including biomaterials, quantum materials, artificial intelligence, sustainability, perovskites, and robotics. Produced by the Materials Research Society.

Episodes

April 20, 2024 4 mins

In this podcast episode, MRS Bulletin’s Laura Leay interviews Antonio Dominguez-Alfaro from the University of Cambridge, UK about the development of a single-step manufacturing approach for a multimaterial 3D-printing method. The research team created two inks. One ink is a polymeric deep eutectic solvent – polyDES – made by combining and heating two salts to form a deep eutectic monomer and adding a photo-initiator to allow the in...

Mark as Played

In this podcast episode, MRS Bulletin’s Elizabeth Wilson interviews postdoctoral researcher M. Iqbal Bakti Utama of Northwestern University about a method allowing single photon production without defect. Aryl diazonium chemistry has been used in the past to functionalize the surface of carbon nanotubes. Utama’s group found that this chemistry also works for tungsten diselenide surfaces. The group immersed tungsten diselenide monol...

Mark as Played

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Irmgard Bischofberger of the Massachusetts Institute of Technology about her investigation of how chirality emerges in nature. She uses liquid crystal molecules of disodium chromoglycate in her studies. When the molecules are dissolved in water, they form linear rods. The research group then forces the rods through a microfluidic cell, causing the rods to assemble into ...

Mark as Played

In this podcast episode, MRS Bulletin’s Laura Leay interviews Eric Pop, Xiangjin Wu, and Asir Intisar Khan from Stanford University about their work building a phase-change memory superlattice at the nanoscale. They created the superlattice by alternating layers of antimony-tellurium nanoclusters with a nanocomposite made from germanium, antimony, and tellurium (GST467). Each layer is ~2 nm thick and the superlattice consists of 15...

Mark as Played

In this podcast episode, MRS Bulletin’s Laura Leay interviews Magalí Lingenfelder from the École Polytechnique Fédérale de Lausanne, Switzerland about her group’s discovery of the switching mechanism behind H-bond-linked two-dimensional networks. The hydrogen bonding ability was tuned by comparing carboxylates to aldehydes. Lingenfelder’s group found that the ability of the structure to switch between an open structure to a close-p...

Mark as Played

In this podcast episode, MRS Bulletin’s Laura Leay interviews Aram Amassian from North Carolina State University about his group’s achievements using RoboMapper, a materials acceleration platform. In researchers’ quest to run environmentally-conscious laboratories, Amassian offers a solution that focuses on characterization of materials. Having found that characterization generates a lot of energy, his group developed an automated ...

Mark as Played

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Kaveh Ahadi from The Ohio State University about a material his group developed that maintains superconductivity in a magnetic field. The researchers grew a film of lanthanum manganite on a crystal of potassium tantalate. When lowered to the temperature of 2 Kelvin, the material is a superconductor. When Ahadi’s group applied 25 Teslas of magnetic field, the material st...

Mark as Played

In this podcast episode, MRS Bulletin’s Elizabeth Wilson interviews Manos Mavrikakis from the University of Wisconsin–Madison about his group’s theoretical work on real-world industrial catalytic conditions. It is often assumed that most catalyst surface atoms stay in place during a reaction, firmly bonded to their metal neighbors. However, Mavrikakis’s theoretical framework shows that under industrial reaction conditions, a surpri...

Mark as Played

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Nathan Gabor from the University of California, Riverside about his group’s work on imaging and directing the flow of electrons in electronic devices. They designed their device by taking a crystal of yttrium iron garnet, which does not conduct electricity, and putting a nanometers-thick layer of platinum, which does conduct electricity, on top of it. When they illumina...

Mark as Played

In this podcast episode, MRS Bulletin’s Rahul Rao interviews Fereshte Ghahari of George Mason University about the use of a scanning tunneling microscope (STM) to measure the electronic and magnetic properties of moiré quantum materials. Ghahari and collaborators twisted two layers of graphene at a specific angle, then chilled the material to suppress as much motion as possible. They ran an STM across the material while varying the...

Mark as Played

In this podcast episode, MRS Bulletin’s Laura Leay interviews Hamideh Khanbareh and Vlad Jarkov of the University of Bath in the UK about an application they introduced for using piezoelectric materials in tissue engineering. The researchers fabricated a composite by combining polydimethylsiloxane with a piezoelectric material of potassium-sodium-niobate that is compatible with cell lines similar to neurons. They then studied how t...

Mark as Played

In this podcast episode, MRS Bulletin’s Laura Leay interviews Professor Jerry Qi and postdoctoral researcher Mingzhe Li of the Georgia Institute of Technology about their new technique to 3D print silica glass. After using two-photon polymerization to cross-link poly-dimethylsiloxane, Qi’s research team used deep UV to convert the polymer into silica glass. The deep UV irradiation is carried out in an oxygen-rich atmosphere. The UV...

Mark as Played

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Surabhi Madhvapathy of Northwestern University about an implantable bioelectronics system that can perform early detection of kidney transplant rejection in rats. Madhvapathy and her colleagues have developed a wireless sensor that attaches to the kidney itself. The biosensor measures the organ’s temperature and its thermal conductivity. These can point toward inflammat...

Mark as Played

In this podcast episode, MRS Bulletin’s Laura Leay interviews Kento Katagiri, a postdoctoral scholar at Stanford University, about the propagation speed of dislocations in materials. Using an X-ray free electron laser to collect data from single-crystal diamond, Katagiri and colleagues have determined the velocity of wave propagation to be in the transonic region. Katagiri’s work is most applicable to extreme shock events such as m...

Mark as Played

In this podcast episode, MRS Bulletin’s Laura Leay interviews Stanford University’s Jennifer Dionne and her PhD student Fareeha Safir and their colleague Amr. Saleh from Cairo University about their work on identifying bacteria in complex samples. Instead of culturing bacteria then identifying them using specific methods such as a polymerase chain reaction test, which takes hours, Dionne’s research group uses Raman spectroscopy com...

Mark as Played

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Alice Soragni of the University of California, Los Angeles about her work in precision oncology. Rather than sequence the DNA of a patient’s tumor, Soragni uses bioprinting to create organoids from the patient’s cells. She then adds various drugs to the cells to directly test their response to each drug. To check the effectiveness of the drugs, Soragni’s group measures ...

Mark as Played

While thermodynamics suggests that water sorption is more favorable at a low temperature, MRS Bulletin podcaster Laura Leay interviews post-doctoral researcher Xinyue Liu from the Massachusetts Institute of Technology (MIT) who reports a hydrogel that can adsorb more water at elevated temperatures. Liu and the research team from MIT and the University of Michigan were searching for a way to harvest water from the air without using ...

Mark as Played

Many industrial processes require heat or create it as a by-product. Now, Takayoshi Katase from the Tokyo Institute of Technology has found a way to harness this heat in an eco-friendly way, as he explains in an interview with MRS Bulletin podcaster Laura Leay. One way to harness this heat is to use thermoelectric devices to produce electricity via the Seebeck effect. Conventional thermoelectric materials, however, are composed of ...

Mark as Played

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Xuchen Wang of Karlsruhe Institute of Technology in Germany about his work on photonic time crystals. While conventional crystals are composed of repeating unit cells in space, such as eight carbon atoms arranged in a cube to form a diamond, a photonic time crystal has a structure that repeats in time. Theoretical predictions of photonic time crystals referred to design...

Mark as Played

Little research has been done on the magnetic properties of high-entropy oxides, a challenge taken up by Alannah Hallas at the University of British Columbia in Canada, interviewed by MRS Bulletin podcaster Laura Leay. Hallas’s research group began by choosing five elements that would be magnetic and combining them in oxide form, rendering a spinel structure for further experimentation. To understand how progressive substitution of...

Mark as Played

Popular Podcasts

    Current and classic episodes, featuring compelling true-crime mysteries, powerful documentaries and in-depth investigations.

    Stuff You Should Know

    If you've ever wanted to know about champagne, satanism, the Stonewall Uprising, chaos theory, LSD, El Nino, true crime and Rosa Parks, then look no further. Josh and Chuck have you covered.

    The Nikki Glaser Podcast

    Every week comedian and infamous roaster Nikki Glaser provides a fun, fast-paced, and brutally honest look into current pop-culture and her own personal life.

    White Devil

    Shootings are not unusual in Belize. Shootings of cops are. When a wealthy woman – part of one of the most powerful families in Belize – is found on a pier late at night, next to a body, it becomes the country’s biggest news story in a generation. New episodes every Monday!

    Start Here

    A straightforward look at the day's top news in 20 minutes. Powered by ABC News. Hosted by Brad Mielke.

Advertise With Us
Music, radio and podcasts, all free. Listen online or download the iHeart App.

Connect

© 2024 iHeartMedia, Inc.