The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

Machine learning and artificial intelligence are dramatically changing the way businesses operate and people live. The TWIML AI Podcast brings the top minds and ideas from the world of ML and AI to a broad and influential community of ML/AI researchers, data scientists, engineers and tech-savvy business and IT leaders. Hosted by Sam Charrington, a sought after industry analyst, speaker, commentator and thought leader. Technologies covered include machine learning, artificial intelligence, deep learning, natural language processing, neural networks, analytics, computer science, data science and more.

Episodes

August 12, 2025 61 mins
In this episode, we're joined by Lin Qiao, CEO and co-founder of Fireworks AI. Drawing on key lessons from her time building PyTorch, Lin shares her perspective on the modern generative AI development lifecycle. She explains why aligning training and inference systems is essential for creating a seamless, fast-moving production pipeline, preventing the friction that often stalls deployment. We explore the strategic shift from treat...
Mark as Played
In this episode, Filip Kozera, founder and CEO of Wordware, explains his approach to building agentic workflows where natural language serves as the new programming interface. Filip breaks down the architecture of these "background agents," explaining how they use a reflection loop and tool-calling to execute complex tasks. He discusses the current limitations of agent protocols like MCPs and how developers can extend them to handl...
Mark as Played
In this episode, Jared Quincy Davis, founder and CEO at Foundry, introduces the concept of "compound AI systems," which allows users to create powerful, efficient applications by composing multiple, often diverse, AI models and services. We discuss how these "networks of networks" can push the Pareto frontier, delivering results that are simultaneously faster, more accurate, and even cheaper than single-model approaches. Using exam...
Mark as Played
In this episode, Kwindla Kramer, co-founder and CEO of Daily and creator of the open source Pipecat framework, joins us to discuss the architecture and challenges of building real-time, production-ready conversational voice AI. Kwin breaks down the full stack for voice agents—from the models and APIs to the critical orchestration layer that manages the complexities of multi-turn conversations. We explore why many production systems...
Mark as Played
Today, we're joined by Fatih Porikli, senior director of technology at Qualcomm AI Research for an in-depth look at several of Qualcomm's accepted papers and demos featured at this year’s CVPR conference. We start with “DiMA: Distilling Multi-modal Large Language Models for Autonomous Driving,” an end-to-end autonomous driving system that incorporates distilling large language models for structured scene understanding and safe plan...
Mark as Played
Today, we're joined by Vijoy Pandey, SVP and general manager at Outshift by Cisco to discuss a foundational challenge for the enterprise: how do we make specialized agents from different vendors collaborate effectively? As companies like Salesforce, Workday, and Microsoft all develop their own agentic systems, integrating them creates a complex, probabilistic, and noisy environment, a stark contrast to the deterministic APIs of the...
Mark as Played
Today, we're joined by Ben Wellington, deputy head of feature forecasting at Two Sigma. We dig into the team’s end-to-end approach to leveraging AI in equities feature forecasting, covering how they identify and create features, collect and quantify historical data, and build predictive models to forecast market behavior and asset prices for trading and investment. We explore the firm's platform-centric approach to managing an exte...
Mark as Played
Today, we're joined by Jason Corso, co-founder of Voxel51 and professor at the University of Michigan, to explore automated labeling in computer vision. Jason introduces FiftyOne, an open-source platform for visualizing datasets, analyzing models, and improving data quality. We focus on Voxel51’s recent research report, “Zero-shot auto-labeling rivals human performance,” which demonstrates how zero-shot auto-labeling with foundatio...
Mark as Played
Today, we're joined by Charles Martin, founder of Calculation Consulting, to discuss Weight Watcher, an open-source tool for analyzing and improving Deep Neural Networks (DNNs) based on principles from theoretical physics. We explore the foundations of the Heavy-Tailed Self-Regularization (HTSR) theory that underpins it, which combines random matrix theory and renormalization group ideas to uncover deep insights about model trainin...
Mark as Played
Today, I’m excited to share a special crossover edition of the podcast recorded live from Google I/O 2025! In this episode, I join Shawn Wang aka Swyx from the Latent Space Podcast, to interview Logan Kilpatrick and Shrestha Basu Mallick, PMs at Google DeepMind working on AI Studio and the Gemini API, along with Kwindla Kramer, CEO of Daily and creator of the Pipecat open source project. We cover all the highlights from the event, ...
Mark as Played
Today, we're joined by Sebastian Gehrmann, head of responsible AI in the Office of the CTO at Bloomberg, to discuss AI safety in retrieval-augmented generation (RAG) systems and generative AI in high-stakes domains like financial services. We explore how RAG, contrary to some expectations, can inadvertently degrade model safety. We cover examples of unsafe outputs that can emerge from these systems, different approaches to evaluati...
Mark as Played
Today, we're joined by Mahesh Sathiamoorthy, co-founder and CEO of Bespoke Labs, to discuss how reinforcement learning (RL) is reshaping the way we build custom agents on top of foundation models. Mahesh highlights the crucial role of data curation, evaluation, and error analysis in model performance, and explains why RL offers a more robust alternative to prompting, and how it can improve multi-step tool use capabilities. We also ...
Mark as Played
Today, we're joined by Josh Tobin, member of technical staff at OpenAI, to discuss the company’s approach to building AI agents. We cover OpenAI's three agentic offerings—Deep Research for comprehensive web research, Operator for website navigation, and Codex CLI for local code execution. We explore OpenAI’s shift from simple LLM workflows to reasoning models specifically trained for multi-step tasks through reinforcement learning,...
Mark as Played
Today, we're joined by Nidhi Rastogi, assistant professor at Rochester Institute of Technology to discuss Cyber Threat Intelligence (CTI), focusing on her recent project CTIBench—a benchmark for evaluating LLMs on real-world CTI tasks. Nidhi explains the evolution of AI in cybersecurity, from rule-based systems to LLMs that accelerate analysis by providing critical context for threat detection and defense. We dig into the advantage...
Mark as Played
In this episode, Kelly Hong, a researcher at Chroma, joins us to discuss "Generative Benchmarking," a novel approach to evaluating retrieval systems, like RAG applications, using synthetic data. Kelly explains how traditional benchmarks like MTEB fail to represent real-world query patterns and how embedding models that perform well on public benchmarks often underperform in production. The conversation explores the two-step process...
Mark as Played
In this episode, Emmanuel Ameisen, a research engineer at Anthropic, returns to discuss two recent papers: "Circuit Tracing: Revealing Language Model Computational Graphs" and "On the Biology of a Large Language Model." Emmanuel explains how his team developed mechanistic interpretability methods to understand the internal workings of Claude by replacing dense neural network components with sparse, interpretable alternatives. The c...
Mark as Played
Today, we're joined by Maohao Shen, PhD student at MIT to discuss his paper, “Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search.” We dig into how Satori leverages reinforcement learning to improve language model reasoning—enabling model self-reflection, self-correction, and exploration of alternative solutions. We explore the Chain-of-Action-Thought (COAT) approach, which u...
Mark as Played
Today, we're joined by Drago Anguelov, head of AI foundations at Waymo, for a deep dive into the role of foundation models in autonomous driving. Drago shares how Waymo is leveraging large-scale machine learning, including vision-language models and generative AI techniques to improve perception, planning, and simulation for its self-driving vehicles. The conversation explores the evolution of Waymo’s research stack, their custom “...
Mark as Played
Today, we're joined by Julie Kallini, PhD student at Stanford University to discuss her recent papers, “MrT5: Dynamic Token Merging for Efficient Byte-level Language Models” and “Mission: Impossible Language Models.” For the MrT5 paper, we explore the importance and failings of tokenization in large language models—including inefficient compression rates for under-resourced languages—and dig into byte-level modeling as an alternati...
Mark as Played
Today, we're joined by Jonas Geiping, research group leader at Ellis Institute and the Max Planck Institute for Intelligent Systems to discuss his recent paper, “Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach.” This paper proposes a novel language model architecture which uses recurrent depth to enable “thinking in latent space.” We dig into “internal reasoning” versus “verbalized reasoning”—analogou...
Mark as Played

Popular Podcasts

    UConn basketball star Azzi Fudd brings her championship swag to iHeart Women’s Sports with Fudd Around and Find Out, a weekly podcast that takes fans along for the ride as Azzi spends her final year of college trying to reclaim the National Championship and prepare to be a first round WNBA draft pick. Ever wonder what it’s like to be a world-class athlete in the public spotlight while still managing schoolwork, friendships and family time? It’s time to Fudd Around and Find Out!

    Crime Junkie

    Does hearing about a true crime case always leave you scouring the internet for the truth behind the story? Dive into your next mystery with Crime Junkie. Every Monday, join your host Ashley Flowers as she unravels all the details of infamous and underreported true crime cases with her best friend Brit Prawat. From cold cases to missing persons and heroes in our community who seek justice, Crime Junkie is your destination for theories and stories you won’t hear anywhere else. Whether you're a seasoned true crime enthusiast or new to the genre, you'll find yourself on the edge of your seat awaiting a new episode every Monday. If you can never get enough true crime... Congratulations, you’ve found your people. Follow to join a community of Crime Junkies! Crime Junkie is presented by audiochuck Media Company.

    The Breakfast Club

    The World's Most Dangerous Morning Show, The Breakfast Club, With DJ Envy, Jess Hilarious, And Charlamagne Tha God!

    The Clay Travis and Buck Sexton Show

    The Clay Travis and Buck Sexton Show. Clay Travis and Buck Sexton tackle the biggest stories in news, politics and current events with intelligence and humor. From the border crisis, to the madness of cancel culture and far-left missteps, Clay and Buck guide listeners through the latest headlines and hot topics with fun and entertaining conversations and opinions.

    24/7 News: The Latest

    The latest news in 4 minutes updated every hour, every day.

Advertise With Us
Music, radio and podcasts, all free. Listen online or download the iHeart App.

Connect

© 2025 iHeartMedia, Inc.