All Episodes

November 13, 2024 10 mins
In this podcast, we spoke with Isha Dey, Senior Scientist, Cell Biology R&D, at Thermo Fisher Scientific about the challenges researchers face in selecting appropriate cell culture conditions due to variability in cell lines, lack of standardized protocols, and inconsistent reagent quality. Thermo Fisher Scientific's new Cell Culture Select Tool was developed to address these challenges by providing specific recommendations for media, FBS, and cultureware for over 150 cell lines, backed by extensive R&D data. Understanding the Challenges in Cell Culture Selection Thermo Fisher Scientific's new Cell Culture Select Tool addresses a persistent challenge in laboratory science: identifying the appropriate cell culture conditions and selecting the right media, supplements, and reagents for different cell lines. The process is complicated by factors like cell line variability, lack of standardized protocols, and inconsistent reagent quality. These issues can introduce variability and impact experimental results, posing a challenge for scientists across labs. “Different cell lines have unique requirements,” explained Isha. “It’s challenging to pinpoint optimal culture conditions due to variability in cell line responses. Additionally, there isn’t always a standardized protocol across labs or comprehensive information on specific culturing needs. This can make it difficult to select the most appropriate media, supplements, and other materials.” Ensuring a consistent supply of high-quality products is essential for reproducibility in experiments. Thermo Fisher Scientific's trusted brands, such as Gibco, Nunc, and Invitrogen, are known for their quality, which is critical for minimizing variability in experimental readouts. The Inspiration Behind the Cell Culture Select Tool The idea for the Cell Culture Select Tool originated from an update to Thermo Fisher Scientific's online technical reference library. Previously, the website listed recommended media types segmented by cell line culture methods—adherent, semi-adherent, or suspension. While helpful, this list was lengthy and lacked interactive functionality. Isha said, “We realized that we could streamline this information into a user-friendly tool”. “In our R&D labs, we culture over 150 cell lines using various media, supplements, and equipment. By making this data accessible to other researchers through an interactive tool, we hoped to eliminate the guesswork and enable reproducible cell culture success.” The tool now provides recommendations for specific media, supplements, and cultureware for culturing, passaging, and freezing over 150 cell lines. With in-house data supporting 75% of these lines, researchers gain access to the resources and insights gathered from Thermo Fisher’s extensive R&D experience. Selecting Cell Lines for the Tool The team started with cell lines listed in their technical reference webpage and expanded the list based on the lines frequently cultured in their R&D labs. These labs conduct heavy cell culture work for various applications, including media development, fluorescence imaging, Western blotting, flow cytometry, transfection, transduction studies, and more. “We wanted to make our R&D data available to researchers for convenience,” shared Isha. “This effort involved many scientists across R&D sites who contributed data and images showing how each cell line appears in recommended media.” Quality and Verification in Thermo Fisher’s Labs The tool’s data is backed by rigorous testing in Thermo Fisher’s R&D labs. Cells are grown in their respective media, culture plastics, and consumables over multiple passages to ensure accuracy. For cancer cell lines, STR profiling and mycoplasma testing are conducted regularly, while stem cell cultures are assessed for pluripotency and purity using imaging and flow cytometry. “Representative images of cell lines, captured using our EVOS imaging system,
Mark as Played

Advertise With Us

Popular Podcasts

Stuff You Should Know
Cardiac Cowboys

Cardiac Cowboys

The heart was always off-limits to surgeons. Cutting into it spelled instant death for the patient. That is, until a ragtag group of doctors scattered across the Midwest and Texas decided to throw out the rule book. Working in makeshift laboratories and home garages, using medical devices made from scavenged machine parts and beer tubes, these men and women invented the field of open heart surgery. Odds are, someone you know is alive because of them. So why has history left them behind? Presented by Chris Pine, CARDIAC COWBOYS tells the gripping true story behind the birth of heart surgery, and the young, Greatest Generation doctors who made it happen. For years, they competed and feuded, racing to be the first, the best, and the most prolific. Some appeared on the cover of Time Magazine, operated on kings and advised presidents. Others ended up disgraced, penniless, and convicted of felonies. Together, they ignited a revolution in medicine, and changed the world.

The Joe Rogan Experience

The Joe Rogan Experience

The official podcast of comedian Joe Rogan.

Music, radio and podcasts, all free. Listen online or download the iHeart App.

Connect

© 2025 iHeartMedia, Inc.