Have you ever come home from the supermarket to discover one of the apples you bought is rotten? It's likely your trust for that grocer was diminished, or you might stop buying that particular brand of apples altogether.
In this episode, we discuss how the quality controls in a production line need to use smart sampling methods in order to avoid sending bad products to the customer, which could ruin the reputation of both the brand and seller.
To do this we describe a thought experiment called Apple Tasting. This allows us to demonstrate the concepts of regret and reward in a sampling process, giving rise to the use of Contextual Bandit Algorithms. Contextual Bandits come from the field of Reinforcement Learning which is a form of Machine Learning where an agent performs an action and tries to maximise the cumulative reward from its environment over time. Standard bandit algorithms simply choose between a number of actions and measure the reward in order to determine the average reward of each action. But a Contextual Bandit also uses information from its environment to inform both the likely reward and regret of subsequent actions. This is particularly useful in personalised product recommendation engines where the bandit algorithm is given some contextual information about the user.
Back to Apple Tasting and product quality control. The contextual bandit in this scenario, consumes a signal from a benign test that is indicative, but not conclusive, of there being a fault and then makes the decision to perform a more in-depth test or not. So the answer for when you should discard or test your product depends on the relative costs of making the right decision (reward) or wrong decision (regret) and how your experience of the environment affected these in the past.
We speak with Prof. David Leslie about how this logic can be applied to any manufacturing pipeline where there is a downside risk of not quality checking the product but a cost in a false positive detection of a bad product.
Other areas of application include:
With interview guest David Leslie, Professor of Statistical Learning in the Department of Mathematics and Statistics at Lancaster University.
Further Reading
Thanks for joining us in the DataCafé. You can follow us on twitter @DataCafePodcast and feel free to contact us about anything you've heard here or think wou
New Heights with Jason & Travis Kelce
Football’s funniest family duo — Jason Kelce of the Philadelphia Eagles and Travis Kelce of the Kansas City Chiefs — team up to provide next-level access to life in the league as it unfolds. The two brothers and Super Bowl champions drop weekly insights about the weekly slate of games and share their INSIDE perspectives on trending NFL news and sports headlines. They also endlessly rag on each other as brothers do, chat the latest in pop culture and welcome some very popular and well-known friends to chat with them. Check out new episodes every Wednesday. Follow New Heights on the Wondery App, YouTube or wherever you get your podcasts. You can listen to new episodes early and ad-free, and get exclusive content on Wondery+. Join Wondery+ in the Wondery App, Apple Podcasts or Spotify. And join our new membership for a unique fan experience by going to the New Heights YouTube channel now!
The Breakfast Club
The World's Most Dangerous Morning Show, The Breakfast Club, With DJ Envy, Jess Hilarious, And Charlamagne Tha God!
Fudd Around And Find Out
UConn basketball star Azzi Fudd brings her championship swag to iHeart Women’s Sports with Fudd Around and Find Out, a weekly podcast that takes fans along for the ride as Azzi spends her final year of college trying to reclaim the National Championship and prepare to be a first round WNBA draft pick. Ever wonder what it’s like to be a world-class athlete in the public spotlight while still managing schoolwork, friendships and family time? It’s time to Fudd Around and Find Out!