A decade ago, just before the beginning of the data science hype cycle was the big data hype cycle. At that time I had the privilege of sitting down with Ph.D. Statistician Dr. Thomas C. Redman (aka the “Data Doc”).
We discussed whether data quality matters less in larger data sets, if statistical outliers represent business insights or data quality issues, statistical sampling errors versus measurement calibration errors, mistaking signal for noise (i.e., good data for bad data), and whether or not the principles and practices of true “data scientists” will truly be embraced by an organization’s business leaders.
This episode is an edited and slightly shortened version of that discussion, which even though it is from ten years ago, I think it still provides good insight into big data quality, then and now.
Extended Show Notes: ocdqblog.com/dbp
Follow Jim Harris on Twitter: @ocdqblog
Email Jim Harris: ocdqblog.com/contact
Other ways to listen: bit.ly/listen-dbp
On Purpose with Jay Shetty
I’m Jay Shetty host of On Purpose the worlds #1 Mental Health podcast and I’m so grateful you found us. I started this podcast 5 years ago to invite you into conversations and workshops that are designed to help make you happier, healthier and more healed. I believe that when you (yes you) feel seen, heard and understood you’re able to deal with relationship struggles, work challenges and life’s ups and downs with more ease and grace. I interview experts, celebrities, thought leaders and athletes so that we can grow our mindset, build better habits and uncover a side of them we’ve never seen before. New episodes every Monday and Friday. Your support means the world to me and I don’t take it for granted — click the follow button and leave a review to help us spread the love with On Purpose. I can’t wait for you to listen to your first or 500th episode!
The Breakfast Club
The World's Most Dangerous Morning Show, The Breakfast Club, With DJ Envy And Charlamagne Tha God!
The Joe Rogan Experience
The official podcast of comedian Joe Rogan.