All Episodes

September 11, 2024 59 mins
Czy sztuczna inteligencja zastąpi klasyczne uczenie maszynowe? Dowiedz się, jak skutecznie wykorzystać obie technologie w biznesie!

✔ Subskrybuj kanał: / https://www.youtube.com/@DataWorkshop?sub_confirmation=1
👍 Zostaw like!
❗Obserwuj mnie na LinkedIn https://www.linkedin.com/in/vladimiralekseichenko
📢 Poleć ten podcast znajomym zainteresowanym praktycznym wykorzystaniem AI w biznesie! 

Przedstawiam różne perspektywy, dzieli się osobistymi doświadczeniami i analizuję, jak te technologie mogą wspierać decyzje biznesowe. 

W tym odcinku dowiesz się:
• Jakie są kluczowe różnice między LLM a klasycznym ML?
• Kiedy warto inwestować w LLM, a kiedy lepiej stosować tradycyjne podejście?
• Jak łączyć obie technologie dla uzyskania najlepszych rezultatów?
• Jakie są praktyczne zastosowania LLM w biznesie?


Najważniejsze tematy:

1. LLM (Large Language Models) i klasyczne uczenie maszynowe (ML) mają różne zastosowania i zalety - wybór między nimi powinien zależeć od charakteru problemu i dostępnych danych.
2. Klasyczne ML nadal wytwarza większą wartość w biznesie, szczególnie dla danych tabelarycznych, oferując lepszą jakość, szybkość i interpretowalność wyników.
3. LLM są przydatne do pracy z nieustrukturyzowanym tekstem, tworzenia baz wiedzy i wspomagania komunikacji między zespołami technicznymi a biznesowymi.
4. Najlepszym podejściem jest często łączenie klasycznego ML z LLM, wykorzystując zalety obu metod.
5. Wdrażanie i utrzymanie rozwiązań opartych na klasycznym ML jest zwykle prostsze i tańsze niż w przypadku LLM.
6. LLM nie zastępują całkowicie zespołu data science, ale mogą być cennym narzędziem wspomagającym, np. w generowaniu kodu czy dokumentacji.
7. Przy projektowaniu rozwiązań AI kluczowe jest zrozumienie problemu, skupienie się na stabilności i przewidywalności, a nie tylko na najnowszych narzędziach.

Subskrybuj teraz i włącz dzwonek powiadomień, aby być dostawać praktyczną wiedzę o uczeniu maszynowym.
Ten podcast to KONIECZNIE POZYCJA dla każdego, kto:
- Interesuje się sztuczną inteligencją i jej zastosowaniami w biznesie
- Rozważa wdrożenie LLM-ów lub klasycznego ML w swojej firmie
- Chce być na bieżąco z najnowszymi trendami w AI



Oglądaj na Youtube: https://youtu.be/TPDvcFeuoZ4



Autorskie kursy Vladimira:
👉 DS/ML od podstaw - https://dataworkshop.eu/pl/practical-machine-learning
👉 Python - https://dataworkshop.eu/pl/intro-python
👉 Statystyka - https://dataworkshop.eu/statistics
👉 SQL - https://dataworkshop.eu/pl/sql
👉 Time Series - https://dataworkshop.eu/pl/time-series
👉 NLP - https://dataworkshop.eu/pl/nlp

🔥 Chcesz uczyć się ML/DS w DataWorkshop?  Zarezerwuj indywidualną konsultację, aby doradzić najlepszą opcję dla Ciebie.
https://dataworkshop.typeform.com/to/YCBMn37h



Linki do podcastu:
📌  https://youtu.be/4pfEZuw3dtE
📌 https://biznesmysli.pl
📌 Apple Podcasts: https://podcasts.apple.com/us/podcast/biznes-myśli/id1215290277
📌 https://open.spotify.com/show/3ZUaHommHHZU6b4WJiyV2I
📌 Google Podcasts https://music.youtube.com/playlist?list=PLWOCRT27Z94XZzwcRI9-ExMyUXeBrF3W_
📌 Spreaker: https://www.spreaker.com/podcast/biznes-mysli--2214604



#machinelearning #datascience #genai #llm #ml #ai
Mark as Played

Advertise With Us

Popular Podcasts

Stuff You Should Know
Dateline NBC

Dateline NBC

Current and classic episodes, featuring compelling true-crime mysteries, powerful documentaries and in-depth investigations. Follow now to get the latest episodes of Dateline NBC completely free, or subscribe to Dateline Premium for ad-free listening and exclusive bonus content: DatelinePremium.com

Las Culturistas with Matt Rogers and Bowen Yang

Las Culturistas with Matt Rogers and Bowen Yang

Ding dong! Join your culture consultants, Matt Rogers and Bowen Yang, on an unforgettable journey into the beating heart of CULTURE. Alongside sizzling special guests, they GET INTO the hottest pop-culture moments of the day and the formative cultural experiences that turned them into Culturistas. Produced by the Big Money Players Network and iHeartRadio.

Music, radio and podcasts, all free. Listen online or download the iHeart App.

Connect

© 2025 iHeartMedia, Inc.