The Python Data & Science Podcast.__init__

The Python Data & Science Podcast.__init__

The podcast about how the Python language powers work in data and science

Episodes

July 28, 2021 36 min
SQL has gone through many cycles of popularity and disfavor. Despite its longevity it is objectively challenging to work with in a collaborative and composable manner. In order to address these shortcomings and build a new interface for your database oriented workloads Erez Shinan created Preql. It is based on the same relational algebra that inspired SQL, but brings in more robust computer science principles to make it more manage...
Share
Mark as Played
When you start working on a data project there are always a variety of unknown factors that you have to explore. One of those is the volume of total data that you will eventually need to handle, and the speed and scale at which it will need to be processed. If you optimize for scale too early then it adds a high barrier to entry due to the complexities of distributed systems, but if you invest in a lot of engineering up front then ...
Share
Mark as Played
With the rising availability of computation in everyday devices, there has been a corresponding increase in the appetite for voice as the primary interface. To accomodate this desire it is necessary for us to have high quality libraries for being able to process and generate audio data that can make sense of human speech. To facilitate research and industry applications for speech data Mirco Ravanelli and Peter Plantinga are buildi...
Share
Mark as Played
If you are interested in a library for working with graph structures that will also help you learn more about the research and theory behind the algorithms then look no further than graph-tool. In this episode Tiago Peixoto shares his work on graph algorithms and networked data and how he has built graph-tool to help in that research. He explains how it is implemented, how it evolved from a simple command line tool to a full-fledge...
Share
Mark as Played
Deep learning has largely taken over the research and applications of artificial intelligence, with some truly impressive results. The challenge that it presents is that for reasonable speed and performance it requires specialized hardware, generally in the form of a dedicated GPU (Graphics Processing Unit). This raises the cost of the infrastructure, adds deployment complexity, and drastically increases the energy requirements for...
Share
Mark as Played
Brett Cannon has been a long-time contributor to the Python language and community in many ways. In this episode he shares some of his work and thoughts on modernizing the ecosystem around the language. This includes standards for packaging, discovering the true core of the language, and how to make it possible to target mobile and web platforms.
Share
Mark as Played
The foundation of every ML model is the data that it is trained on. In many cases you will be working with tabular or unstructured information, but there is a growing trend toward networked, or graph data sets. Benedek Rozemberczki has focused his research and career around graph machine learning applications. In this episode he discusses the common sources of networked data, the challenges of working with graph data in machine lea...
Share
Mark as Played
The growth of analytics has accelerated the use of SQL as a first class language. It has also grown the amount of collaboration involved in writing and maintaining SQL queries. With collaboration comes the inevitable variation in how queries are written, both structurally and stylistically which can lead to a significant amount of wasted time and energy during code review and employee onboarding. Alan Cruickshank was feeling the pa...
Share
Mark as Played
Deep learning is gaining an immense amount of popularity due to the incredible results that it is able to offer with comparatively little effort. Because of this there are a number of engineers who are trying their hand at building machine learning models with the wealth of frameworks that are available. Andrew Ferlitsch wrote a book to capture the useful patterns and best practices for building models with deep learning to make it...
Share
Mark as Played
Unit tests are an important tool to ensure the proper functioning of your application, but writing them can be a chore. Stephan Lukasczyk wants to reduce the monotony of the process for Python developers. As part of his PhD research he created the Pynguin project to automate the creation of unit tests. In this episode he explains the complexity involved in generating useful tests for a dynamic language, how he has designed Pynguin ...
Share
Mark as Played
Natural language processing is a powerful tool for extracting insights from large volumes of text. With the growth of the internet and social platforms, and the increasing number of people and communities conducting their professional and personal activities online, the opportunities for NLP to create amazing insights and experiences are endless. In order to work with such a large and growing corpus it has become necessary to move ...
Share
Mark as Played
Machine learning is a tool that has typically been performed on large volumes of data in one place. As more computing happens at the edge on mobile and low power devices, the learning is being federated which brings a new set of challenges. Daniel Beutel co-created the Flower framework to make federated learning more manageable. In this episode he shares his motivations for starting the project, how you can use it for your own work...
Share
Mark as Played
Data exploration is an important step in any analysis or machine learning project. Visualizing the data that you are working with makes that exploration faster and more effective, but having to remember and write all of the code to build a scatter plot or histogram is tedious and time consuming. In order to eliminate that friction Doris Lee helped create the Lux project, which wraps your Pandas data frame and automatically generate...
Share
Mark as Played
Any project that is used by more than one person will eventually need to handle permissions for each of those users. It is certainly possible to write that logic yourself, but you'll almost certainly do it wrong at least once. Rather than waste your time fighting with bugs in your authorization code it makes sense to use a well-maintained library that has already made and fixed all of the mistakes so that you don't have to....
Share
Mark as Played
Being able to present your ideas is one of the most valuable and powerful skills to have as a professional, regardless of your industry. For software engineers it is especially important to be able to communicate clearly and effectively because of the detail-oriented nature of the work. Unfortunately, many people who work in software are more comfortable in front of the keyboard than a crowd. In this episode Neil Thompson shares hi...
Share
Mark as Played
One of the great promises of computers is that they will make our work faster and easier, so why do we all spend so much time manually copying data from websites, or entering information into web forms, or any of the other tedious tasks that take up our time? As developers our first inclination is to "just write a script" to automate things, but how do you share that with your non-technical co-workers? In this episode Antti...
Share
Mark as Played
When you are writing code it is all to easy to introduce subtle bugs or leave behind unused code. Unused variables, unused imports, overly complex logic, etc. If you are careful and diligent you can find these problems yourself, but isn't that what computers are supposed to help you with? Thankfully Python has a wealth of tools that will work with you to keep your code clean and maintainable. In this episode Anthony Sottile exp...
Share
Mark as Played
Writing code that is easy to read and understand will have a lasting impact on you and your teammates over the life of a project. Sometimes it can be difficult to identify opportunities for simplifying a block of code, especially if you are early in your journey as a developer. If you work with senior engineers they can help by pointing out ways to refactor your code to be more readable, but they aren't always available. Brenda...
Share
Mark as Played
Becoming data driven is the stated goal of a large and growing number of organizations. In order to achieve that mission they need a reliable and scalable method of accessing and analyzing the data that they have. While business intelligence solutions have been around for ages, they don't all work well with the systems that we rely on today and a majority of them are not open source. Superset is a Python powered platform for ex...
Share
Mark as Played
Python is a language that is used in almost every imaginable context and by people from an amazing range of backgrounds. A lot of the people who use it wouldn't even call themselves programmers, because that is not the primary focus of their job. In this episode Chris Moffitt shares his experience writing Python as a business user. In order to share his insights and help others who have run up against the limits of Excel he mai...
Share
Mark as Played

Popular Podcasts

  • Join Paris Hilton each week as she speaks candidly with her friends and family, the hottest in movies, music, and television, innovators, creators, newsmakers, and icons. Paris will sit down for edgy, in depth conversations with a multitude of unexpected guests. She will interview people in a way that only Paris can. Questions and topics that are surprising and unanticipated. Honest, fun, open, inspiring and unpredictable. Loves it. Paris Hilton is an influencer, DJ, designer, recording artist, philanthropist, host, actress, model and author. Now, you can get closer and more personal than ever with Paris each week. This is Paris.

  • Stuff You Should Know

    If you've ever wanted to know about champagne, satanism, the Stonewall Uprising, chaos theory, LSD, El Nino, true crime and Rosa Parks then look no further. Josh and Chuck have you covered.

  • The Daily

    This is what the news should sound like. The biggest stories of our time, told by the best journalists in the world. Hosted by Michael Barbaro. Twenty minutes a day, five days a week, ready by 6 a.m.

  • All The Smoke

    ALL THE SMOKE pairs two of the most outspoken and controversial players of their time. Known as fiery, intense competitors during their on-court careers, Matt Barnes and Stephen Jackson are now two of the most widely respected voices by today’s crop of NBA stars. Serving as mentors to numerous players throughout the league and with their hands firmly on the pulse of the game, they have first-hand insight into the minds, lives and pressing issues facing today’s players. Barnes and Jackson, who have played alongside two generations of All-Stars, will dish on the latest news and drama from on and off the court without boundaries.

  • Crime Junkie

    If you can never get enough true crime... Congratulations, you’ve found your people.

Facebook comments will no longer be available on iHeart

We're taking steps to simplify your experience. If you want to reach out to our hosts or stations, please do so via their website or social media. If you need any assistance please check out our help site.

Chat About The Python Data & Science Podcast.__init__

Advertise With Us
Music, radio and podcasts, all free. Listen online or download the iHeartRadio App.

Connect

© 2021 iHeartMedia, Inc.