The Python Data & Science Podcast.__init__

The Python Data & Science Podcast.__init__

The podcast about Python for data and science

Episodes

May 3, 2021 51 min
Data exploration is an important step in any analysis or machine learning project. Visualizing the data that you are working with makes that exploration faster and more effective, but having to remember and write all of the code to build a scatter plot or histogram is tedious and time consuming. In order to eliminate that friction Doris Lee helped create the Lux project, which wraps your Pandas data frame and automatically generate...
Share
Mark as Played
Any project that is used by more than one person will eventually need to handle permissions for each of those users. It is certainly possible to write that logic yourself, but you'll almost certainly do it wrong at least once. Rather than waste your time fighting with bugs in your authorization code it makes sense to use a well-maintained library that has already made and fixed all of the mistakes so that you don't have to....
Share
Mark as Played
Being able to present your ideas is one of the most valuable and powerful skills to have as a professional, regardless of your industry. For software engineers it is especially important to be able to communicate clearly and effectively because of the detail-oriented nature of the work. Unfortunately, many people who work in software are more comfortable in front of the keyboard than a crowd. In this episode Neil Thompson shares hi...
Share
Mark as Played
One of the great promises of computers is that they will make our work faster and easier, so why do we all spend so much time manually copying data from websites, or entering information into web forms, or any of the other tedious tasks that take up our time? As developers our first inclination is to "just write a script" to automate things, but how do you share that with your non-technical co-workers? In this episode Antti...
Share
Mark as Played
When you are writing code it is all to easy to introduce subtle bugs or leave behind unused code. Unused variables, unused imports, overly complex logic, etc. If you are careful and diligent you can find these problems yourself, but isn't that what computers are supposed to help you with? Thankfully Python has a wealth of tools that will work with you to keep your code clean and maintainable. In this episode Anthony Sottile exp...
Share
Mark as Played
Writing code that is easy to read and understand will have a lasting impact on you and your teammates over the life of a project. Sometimes it can be difficult to identify opportunities for simplifying a block of code, especially if you are early in your journey as a developer. If you work with senior engineers they can help by pointing out ways to refactor your code to be more readable, but they aren't always available. Brenda...
Share
Mark as Played
Becoming data driven is the stated goal of a large and growing number of organizations. In order to achieve that mission they need a reliable and scalable method of accessing and analyzing the data that they have. While business intelligence solutions have been around for ages, they don't all work well with the systems that we rely on today and a majority of them are not open source. Superset is a Python powered platform for ex...
Share
Mark as Played
Python is a language that is used in almost every imaginable context and by people from an amazing range of backgrounds. A lot of the people who use it wouldn't even call themselves programmers, because that is not the primary focus of their job. In this episode Chris Moffitt shares his experience writing Python as a business user. In order to share his insights and help others who have run up against the limits of Excel he mai...
Share
Mark as Played
There are a large and growing number of businesses built by and for data science and machine learning teams that rely on Python. Tony Liu is a venture investor who is following that market closely and betting on its continued success. In this episode he shares his own journey into the role of an investor and discusses what he is most excited about in the industry. He also explains what he looks at when investing in a business and g...
Share
Mark as Played
Jupyter notebooks are a dominant tool for data scientists, but they lack a number of conveniences for building reusable and maintainable systems. For machine learning projects in particular there is a need for being able to pivot from exploring a particular dataset or problem to integrating that solution into a larger workflow. Rick Lamers and Yannick Perrenet were tired of struggling with one-off solutions when they created the Or...
Share
Mark as Played
When you are writing a script it can become unwieldy to understand how the logic and data are flowing through the program. To make this easier to follow you can use a flow-based approach to building your programs. Leonn Thomm created the Ryven project as an environment for visually constructing a flow-based program. In this episode he shares his inspiration for creating the Ryven project, how it changes the way you think about prog...
Share
Mark as Played
One of the perennial challenges in software engineering is to reduce the opportunity for bugs to creep into the system. Some of the tools in our arsenal that help in this endeavor include rich type systems, static analysis, writing tests, well defined interfaces, and linting. Phillip Schanely created the CrossHair project in order to add another ally in the fight against broken code. It sits somewhere between type systems, automate...
Share
Mark as Played
Collaborating on software projects is largely a solved problem, with a variety of hosted or self-managed platforms to choose from. For data science projects, collaboration is still an open question. There are a number of projects that aim to bring collaboration to data science, but they are all solving a different aspect of the problem. Dean Pleban and Guy Smoilovsky created DagsHub to give individuals and teams a place to store an...
Share
Mark as Played
Creating well designed software is largely a problem of context and understanding. The majority of programming environments rely on documentation, tests, and code being logically separated despite being contextually linked. In order to weave all of these concerns together there have been many efforts to create a literate programming environment. In this episode Jeremy Howard of fast.ai fame and Hamel Husain of GitHub share the work...
Share
Mark as Played
Working with network protocols is a common need for software projects, particularly in the current age of the internet. As a result, there are a multitude of libraries that provide interfaces to the various protocols. The problem is that implementing a network protocol properly and handling all of the edge cases is hard, and most of the available libraries are bound to a particular I/O paradigm which prevents them from being widely...
Share
Mark as Played
One of the common complaints about Python is that it is slow. There are languages and runtimes that can execute code faster, but they are not as easy to be productive with, so many people are willing to make that tradeoff. There are some use cases, however, that truly need the benefit of faster execution. To address this problem Kevin Modzelewski helped to create the Pyston intepreter that is focused on speeding up unmodified Pytho...
Share
Mark as Played
Every software project has a certain amount of boilerplate to handle things like linting rules, test configuration, and packaging. Rather than recreate everything manually every time you start a new project you can use a utility to generate all of the necessary scaffolding from a template. This allows you to extract best practices and team standards into a reusable project that will save you time. The Copier project is one such uti...
Share
Mark as Played
On its surface Python is a simple language which is what has contributed to its rise in popularity. As you move to intermediate and advanced usage you will find a number of interesting and elegant design elements that will let you build scalable and maintainable systems and design friendly interfaces. Luciano Ramalho is best known as the author of Fluent Python which has quickly become a leading resource for Python developers to in...
Share
Mark as Played
Building a web application requires integrating a number of separate concerns into a single experience. One of the common requirements is a content management system to allow product owners and marketers to make the changes needed for them to do their jobs. Rather than spend the time and focus of your developers to build the end to end system a growing trend is to use a headless CMS. In this episode Jake Lumetta shares why he decid...
Share
Mark as Played
Notebooks have been a useful tool for analytics, exploratory programming, and shareable data science for years, and their popularity is continuing to grow. Despite their widespread use, there are still a number of challenges that inhibit collaboration and use by non-technical stakeholders. Barry McCardel and his team at Hex have built a platform to make collaboration on Jupyter notebooks a first class experience, as well as allowin...
Share
Mark as Played

Chat About The Python Data & Science Podcast.__init__

Advertise With Us

Popular Podcasts

Crime Junkie
The Daily

The Daily

This is what the news should sound like. The biggest stories of our time, told by the best journalists in the world. Hosted by Michael Barbaro. Twenty minutes a day, five days a week, ready by 6 a.m.

Dateline NBC

Dateline NBC

Current and classic episodes, featuring compelling true-crime mysteries, powerful documentaries and in-depth investigations.

For You

    Music, radio and podcasts, all free. Listen online or download the iHeartRadio App.

    Connect

    © 2021 iHeartMedia, Inc.