La musica e il linguaggio sono due elementi fondamentali dell’esperienza umana, ma quanto hanno davvero in comune?
In questa puntata esploriamo il rapporto tra percezione linguistica e musicale, concentrandoci sugli aspetti fonetici e sulle strutture cognitive che li governano. Attraverso esperimenti e studi neuroscientifici, vediamo insieme come il cervello umano processa il suono, distinguendo (o confondendo) la musica dal linguaggio.
Grafiche: Gianluca La Bruna
La sigla è stata prodotta da White Hot e fornita da
https://freebeats.ioI richiami dei cercopitechi verdi sono stati tratti dalla pagina web del progetto di ricerca iniziato da Dorothy Cheney e Robert Seyfarth sul comportamento di gruppi di primati del Dipartimento di Biologia e Psicologia dell'Università della Pennsylvania al sito:
https://www.sas.upenn.edu/~seyfarth/Baboon%20research/vervet%20vox.htmIl canto della megattera è stato tratto dal canale YouTube del centro di ricerca oceanografico Monterey Bay Aquarium Research Institute (MBARI):
https://www.youtube.com/watch?v=5tRMqbPH_pk&ab_channel=MBARI%28MontereyBayAquariumResearchInstitute%29Gli esempi di
sinewave speech e del corrispondente
clear speech sono stati tratti dall’articolo “How do illusions trick the brain?” di Dana Boebinger, pubblicato il 13 maggio 2022 sul sito del McGovern Institute for Brain Research del MIT (l’articolo menziona l’Università del Sussex per i file originali):
https://mcgovern.mit.edu/2022/05/13/use-your-illusion/FONTI:
- Anvari S., Trainor L.J., Woodside J., & Levy B.A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of Experimental Child Psychology, 83:111-130.
- Bargh J.A., & Chartrand T.L. (2000). Studying the Mind in the Middle: A Practical Guide to Priming and Automaticity Research. In H. Reis, & C. Judd (Eds.). Handbook of Research Methods in Social Psychology (pp. 1-39). New York, NY: Cambridge University Press.
- Best C.T., & Avery R.A. (1999). Left-hemisphere advantage for click consonants is determined by linguistic significance and experience. Psychological Science, 10:65-70.
- Carreiras M., Lopez J., Rivero E., & Corina D. (2005). Neural processing of a whistled language. Nature, 433:31-32.
- Chang E.E, & Merzenich M.M. (2003). Environmental noise retards auditory cortical development. Science, 300:498-502.
- Cheney D.L., & Seyfarth R.M. (1982). Vervet alarm calls: Semantic communication in free ranging primates. Animal Behaviour, 28:1070-1266.
- Cuddy L.L., Balkwill L.L., Peretz I., & Holden R.R. (2005). A study of "tone deafness" among university students. Annals of the New York Academy of Sciences, 1060:311-324.
- Dalla Bella S., Giguere, J.E., & Peretz I. (2007). Singing proficiency in the general population. Journal of the Acoustical Society of America, 121:1182-1189.
- Darwin C. (1871). The Descent of Man, and Selection in Relation to Sex. London: John Murray.
- Eliasson S. (1985). Stress alternation and vowel length: new evidence for an underlying nine-vowel system in Swedish. Nordic Journal of Linguistics, 8(2):101-129.
- Griffiths T.D. (2002). Central auditory processing disorders. Current Opinion in Neurobiology, 15:31-33.
- Hoc